
Malware Development for
Dummies

1

whoami

Jake Adelson
• Senior Operator – Offensive Security at EY
• OSCP, OSCE, OSWP
• Red & purple teaming
• Malware developer

2

Disclaimer

Educational purposes.

This talk is intended to demystify the thought process behind malware development and
shed light on the autonomy of malicious software.
Deploying malware on systems without permission is illegal, so only do this on authorized
offensive security engagements/in a lab/in CTFs.

3

Terminology

Implant – The malware part of a C2 framework

Listening Post – Operator-side portion of the C2 framework. Implant communicates with it to receive instructions and deliver output

C2 Channel – The method the malware uses to communicate with the Listening Post

Beaconing – The act of reaching out and communicating with the C2 server

OPSEC – Operational Security. Keeping your malware running covertly and minimizing data leakage.

Signature – A way to uniquely identify a particular piece of malicious code. This can include its hash, hardcoded strings, unique behaviours,
or quirks in runtime.

Getting burnt – In the context of malware development, it refers to when your payload is so heavily signatured that it’s no longer possible
to covertly use in its current state.

4

Design
Philosophy
• Keep payloads as generic as possible

to increase the difficulty required to
signature it.

• Avoid letting your implant touch disk.
Use a stager to perform OPSEC checks
and load implant into memory.

• Consider OPSEC each step of the way
(strings in binary, secure network
communications, etc.).

5

Why write your own malware?

In recent years, there have been several substantial open-source C2 frameworks and
various other malware projects released on GitHub. With easy access to all of these
options, why would you make your own?
- Public C2 frameworks are more likely to be signatured by Defensive Solutions, rendering

them more likely to be DoA when trying to use them in mature environments. Making
your own will increase the likelihood of remaining undetected.

- Without knowing what is going on behind the scenes with other malware, you run the
risk of OPSEC slipups and potential damage to infected systems. By making your own,
you’ll know exactly what’s going on whenever you run a command.

- Once you understand how the core of it works, you’ll be equipped to contribute to open-
source projects.

- If you are a blue teamer, writing your own malware will provide insight for detection
opportunities for other malware in the wild.

6

Stages

Stage 0: Initial payload execution – Macro, EXE, HTA, etc. Perform safety
checks such as sandbox detection. Minimal on-disk footprint. Load stage 0.5
or skip to 1.

Stage 0.5: Unmanaged stager/dropper. Designed to be used interchangeably
with stage 0 payloads to minimize effort needed to get a functional stager
working. Convert to shellcode and embed. Can also use this stage to perform
advanced OPSEC techniques such as disabling AMSI & ETW.

Stage 1: Persistence C2 – basic functionality, more OPSEC techniques
(identify AV/EDR, attempt to unhook or bypass endpoint defenses, check for
proxies or traffic inspection tools, etc.) variety of high-latency C2 channels,
load stage 2.

Stage 2: Fully interactive C2. Advanced functionality. Generally low-latency
C2 channel like HTTP/S.

7

Language
Options
• Low-Level (C, C++)
• Scripting (PowerShell,

Python)
• Platform Specific (C#,

Swift)
• Other (Nim, Go, Rust,

VBA, ASM, etc.)

8

Low-level (C, C++)

Advantages:
• Easy access to the Windows API

• MSDN
• Small compiled binary size

• Easy to convert to shellcode (sRDI) and use in stagers

Disadvantages:
• Harder to get into if you don’t have much programming experience

• More bugs, slower development time
• Generally easier to reverse engineer since most RE tools are built with

languages like C++ in mind.

9

Scripting (PowerShell, Python)

PowerShell can be a viable option. It’s installed by default on all
modern Windows systems, but AMSI and ETW make it much easier for
defenders to get insight into your payload while it’s running. Although
those defenses can be disabled, this can be pretty noisy.

Python is commonly used for the listening post, due to the ease of use
and flexibility of the language. However, there are several issues with a
python-based payload. If you want to be able to run your payload on a
system that doesn’t have python installed (99.9% of systems in
corporate environments won’t have it), you’ll need to use tools such as
Pyinstaller or Py2Exe to “compile” your script into an executable.

10

Platform Specific (C#, Swift)

For example, C# for Windows or Swift for MacOS.

Many open-source frameworks are written in part in C#, so lots of examples to
reference.

Typically easier to reverse engineer compared to lower level languages. C# is a JIT
(just-in-time) compiled language, which means that it’s only actually compiled
during runtime, and the binary on disk can be reversed back to it’s source pretty
easily.
The source can be obfuscated to increase the difficulty of reverse engineering, but
this can have a separate set of issues.
- Public obfuscation tools are heavily signatured.
- Code needs to be build for a specific version of the .NET framework.

11

Other (Nim, Go, Rust, VBA, etc.)

Nim is a recently trendy language for malware development. It has a
syntax similar to python, compiles down to C and allows for very
convenient access to Windows internals. The OffensiveNim GitHub
repo is packed full of useful code samples.
Golang can compile down to essentially every system architecture out
there, which makes developing cross-platform malware extremely easy.
The final compiled payloads tend to be quite large (~5Mb, opposed to
~300kb in C++), so it’ll definitely depend on use case.

12

Stager

13

What is a stager?

A stager is a lightweight payload designed to safely
load the main implant into memory. AV systems
commonly focus on detecting payloads while they are
on-disk, either with static or dynamic analysis
techniques, or shortly after they are executed using
behavior analytics. By utilizing a stager, operators can
implement safety checks to prevent it from executing
within an AV sandbox to increase the likelihood of the
payload being allowed on disk. It also reduces the
likelihood of a defender getting ahold of your main
payload.

14

Stager: Downloader

- Since the main payload remains on your server, it’s easier to control
(through implant-side safety checks, firewall rules, server shutdown,
etc.) who can request it. The fewer analysts looking at your payload,
the longer it’ll last before signatures start getting developed for it.
- Easy to implement in a variety of languages

15

Stager: Downloader - Flow

• Initial execution
• Reach out to server via HTTP/S, DNS, ICMP, etc.
• Download payload (typically shellcode) into a buffer in memory
• Copy buffer to remote process & execute
Or
• Execute payload buffer locally

16

Downloader

17

Stager: Dropper

Advantages
- Doesn’t require any additional infrastructure
- Less moving parts
- Doesn’t attempt to reach out to the internet

Disadvantages:
- Final payload is out of your hands. If the stager is recovered, then a
determined analyst would likely be able to extract your final payload.

18

Stager: Dropper

• Execute
• Decodes/decrypts embedded shellcode into buffer in memory
• Copy decoded buffer to remote process & execute
Or
• Execute payload buffer locally

19

Local Execution

20

Remote Process Injection

21

Sandbox
Evasion

22

Server-Side
Checks

Rules can be applied for the server hosting the second stage payload to prevent access
from defenders. For example, IP ranges known to be owned by security solution vendors
can be blocked, and alerts configured to notify if you’re potentially under investigation.

The above code is a basic example of what a IP check function might look like. Obviously in
a real example, you wouldn’t hardcode the client address.

23

Execution
Guardrails

Ensure your payload is only executing on target systems. For example, add a check to ensure
the infected system is domain-joined, to prevent targets from executing the payload on their
home system.

Most sandboxes are not domain joined, so this check also helps to identify if we’re running
on a real system.

24

Listening Post

25

Listening Post Interface

• CLI
• GUI
• Web application
• Android app
• Voice commands
• Photodiode sensor array

26

Interface: CLI

CLI interfaces are minimalistic, and have a high
level of comfort once you get used to them. Using
frameworks like Prompt Toolkit can enable
operators to add useful shortcuts and have a
variety of ways to display large amounts of data in
an easily digestible manner.

https://github.com/nettitude/PoshC2
https://github.com/Ne0nd0g/merlin
https://github.com/bats3c/shad0w
https://github.com/BishopFox/sliver

27

28

Interface: Web Application

• Flask
• Django
• HTTP.Server

Web applications are a
popular choice for
interfaces. They can be
accessed from essentially
any platform, and have a
large variety of ways to
customize the user
experience.

https://github.com/cobbr/Covenant
29

Interface: GUI https://github.com/HavocFramework/Havoc

30

C2 Backend

• HTTP Server – When using HTTP/S C2 or have a web application
interface
• SQLite Database – Stores data about each connected implant, as well

as queued tasks
• Logging module/server – Records all executed commands and output
• Authoritative DNS server – Used for DNS C2 or monitoring for

potential investigation

31

C2 Channels

• HTTP/S
• Websockets

• DNS
• DNS over HTTPS

• ICMP
• 3rd party application
• Email
• Any many more!

Considerations:
• Which ports are likely allowed for

outbound connections?
• 80 and 443 are nearly always going to be

allowed. High ports and uncommonly
used ones, like 22, are more likely to be
blocked.

• Which protocols are most likely to be
monitored?

• How often is my malware going to be
beaconing?
• Persistence (stage 1) malware: one

beacon hourly/daily
• Interactive (stage 2) malware: typically at

least one beacon per minute, if not more

32

C2: HTTP/S

• Flexible

• Expected, from a network monitoring
standpoint

• Able to send and receive large
amounts of data

33

C2: 3rd Party
A third party C2 is a communication channel fully reliant on a 3rd party website
or application for establishing connection to an infected computer.

Advantages:
- Can use trusted domains to bypass firewall restrictions
- Choosing the right application can blend well into normal network traffic
- If an API is provided, development can be pretty quick
Disadvantages:
- Large amounts of suspicious traffic may result in your account getting

banned.
- Limits in amount of data that can be communicated.
- Slow

34

Data Bundling &
Communication

Example

à implantID_check-in
ßrequestID_taskID_arguments
àrequestID_responseData (responseData is typically encoded) 35

Implant

36

Implant: Flow

• Enters loop
• Reaches out to C2 server
• Checks for tasks
• If no task:
• Sleep and restart loop

• If task:
• Perform action on host
• Return response to server
• Sleep and restart loop

37

Implant: OPSEC

Avoid storing strings within the binary. Can prevent easy discovery by
encoding/encrypting required strings and decoding them in runtime,
and not including print statements or debug strings in the payload itself
Convert key API calls to direct system calls in mature environments with
EDR to evade API hooking.
Sleep obfuscation. A more advanced technique that became popular
recently. Allows the implant to encrypt most of its malicious code in
memory while not in use. Can help to defeat memory scanners.

38

Building on a Proof-of-Concept

Just because we’re developing our own malware, it doesn’t mean we
constantly need to reinvent the wheel. If you have an idea for a C2
method or a new feature, have a look to see if anyone did it before.

If it’s a barebones example, try rebuilding it yourself and use it as
reference if you get stuck. Once you get it working, add in more
features to make it operational ready.

https://github.com/praetorian-inc/slack-c2bot

39

Slack C2

40

Slack C2

41

42

43

Misc.

44

Executing Commands with cmd or PowerShell

Advantages:
- Easier to implement (Can use CreateProcess function)
• More familiar commands and output

Disadvantages:
- Larger detection surface (commonly monitored)
- Less flexibility with output

45

Using Windows API Functions

• Advantages:
• Harder to detect; typically requires API hooking to monitor
• More granular control of output
• Additional functionality not covered with LOLBins or native PowerShell

commands

• Disadvantages:
• Takes more time to develop. A function will need to be created for each

command, instead of just sending input to cmd.exe or powershell.exe

46

Misc. Code

• Detours, hook Messagebox function
• DLL & Assembly to shellcode generator in python
• CLI template
• Flask template
• SQLite template + schema
• HTTP requests:

• C++
• Golang
• Nim

• Command Execution
• C++
• Golang
• Nim

47

Google Everything

You likely aren’t the first person encountering this error, so there’s no
need to jump directly to making a post about it. Try to debug it
yourself, and then google for any error messages you have.

People are generally happy to help if you’ve shown you’ve covered your
bases first.

site:stackoverflow.com “your error goes here”

48

Windows API Primer

49

Note about function naming conventions.

When looking through the Windows API documentation, you’ll notice
some functions have an “A” or “W” at the end of them. These stand for
“Ascii” and “Wide” (also known as Unicode).

When using Visual Studio, you can set your solution to either Ascii or
Unicode, and then exclude the “A” or “W”. If this letter is not included
in the function name, it’ll act as an alias for the configured version.
Another common ending is “Ex”. This indicates a new version of the
function, usually allowing new arguments to be used, or a different
output format.

50

Reading the API
documentation

The documentation page will contain all the details needed to
perform the API call. The Syntax field will show the function
prototype in C++, detailing the input and outputs, as well as
the type of data returned from the function call.

Requirements are stated at the bottom, to indicate which
header to include and which library to link.

51

Listing
Processes

This looks similar to the previous one we looked at,
with a couple small differences. For example, there is
an output variable within the API’s arguments, and
the return value is a BOOL.

Referencing the “Return value” section, you can see
that the function will return zero if it fails, or a
nonzero value on success. Zero will map to FALSE,
which makes error handling as easy as putting an if
statement and a ! before the function call:

52

Username

Defensive solutions commonly monitor process creation
events, and search for suspicious parent-child process
relationships. For example, if your malware is running within
WORD.exe (can occur after staging a payload from a VBA
macro), seeing a child process of cmd.exe, followed by another
child process of whoami.exe would be considered an indication
of potentially malicious activity.

Using API calls will avoid spawning any new processes and
makes behavior analysis more difficult for solutions not utilizing
API hooking.

53

Get current
Process ID

54

Create a process

This function might look a bit intimidating due
to how many more arguments it has, but many
of them are optional. The documentation also
includes a lot of example code, which is helpful
to reference in situations like this.

As seen below, NULL, FALSE and 0 are passed
several times, leaving only 3 arguments that
you need to include for basic usage.

55

Visual Studio Notes
Make sure to disable Precompiled Headers. Not needed for our use cases
and will likely cause a headache. Right click on the project in the Solution
Explorer and select Properties.

Check for multi-threaded DLL setting. Multi-threaded DLL = dynamic linking,
Multi-threaded = static linking. Debug means additional symbols will be
included to make debugging easier; disable this for actual usage.

56

Creating an EXE in Visual Studio

57

Creating a DLL in Visual Studio

58

Homework:

Try adding the following improvements to the Slack C2 PoC:
- Multi-host support. Add some way for each host to identify itself and its output in the slack

channel.
- Server-side command line to send commands and receive data.
- Encrypt data being sent over Slack

Try recreating the same payload flow using the API of a different chat app, like Telegram.

With the information from this talk, try building some stagers with the following capabilities:
- Download shellcode from a webserver and execute it in memory
- Download encrypted shellcode from a webserver, decrypt it in memory and execute
- Embed encrypted shellcode within an image (steganography) posted on a social media platform.

Download, extract, decrypt, and execute in memory.

59

Resources

• Code / Tutorials
• https://github.com/vxunderground
• https://0xpat.github.io

• Useful Libraries:
• https://github.com/monoxgas/sRDI (converting native binaries to shellcode)
• https://github.com/TheWover/donut (converting managed binaries to shellcode)
• https://github.com/prompt-toolkit/python-prompt-toolkit (CLI framework)
• https://github.com/pyqt (GUI framework)

• Inspiration:
• https://www.mandiant.com/resources/insights/apt-groups (Detailed writeups on the TTPs used by

threat actors)
• Courses:

• Sektor7 Malware Development. Each course is less than $300, and provide a ton of useful
information.

• Dark Side Ops 1 & 2. More pricy, but fantastic content.

60

https://github.com/vxunderground
https://github.com/monoxgas/sRDI
https://github.com/TheWover/donut
https://github.com/prompt-toolkit/python-prompt-toolkit
https://github.com/pyqt
https://www.mandiant.com/resources/insights/apt-groups

Questions?

61

Twitter: @_gui3_
GitHub: 5yn

