
How to read code
A Primer for Security Practitioners

Hello!

I am Samy
Staff Product Security Engineer @ Okta
OSCP, OSWE, CISSP

2

1. Soft Skills
2. Tools

What we’ll cover?

3

Why do we need to read code?

- Extend it
- Add a feature
- Contribute to OSS

4

- Understand it better
- Learn
- Code review
- Threat modeling

- Fix a bug
- Find a bug

- Vulnerability research

Reading vs Writing Code

Reading code is much harder than writing code:
- There are many solutions to a problem

- Multiplication

- Reading and writing are tightly coupled in
natural languages

- Reading == Understanding
- Not the case in formal languages

5

The Situatoin

You are given a code base

Now what?

6

How does it work?1

7

What problem is trying to
solve?
Context is king!

?

What does this program do?

8

int main(int argc, char **argv) {
initialize_main(&argc, &argv);
set_program_name(argv[0]);
setlocale(LC_ALL, "");
bindtextdomain(PACKAGE, LOCALEDIR);
textdomain(PACKAGE);

atexit(close_stdout);

parse_gnu_standard_options_only(argc, argv,
PROGRAM_NAME, PACKAGE_NAME, Version, true, usage,
AUTHORS,(char const *)NULL);

char **operands = argv + optind;
char **operand_lim = argv + argc;
if (optind == argc) *operand_lim++ =

bad_cast("y");

/* Buffer data locally once, rather than having
the

large overhead of stdio buffering each
item. */
size_t bufalloc = 0;
bool reuse_operand_strings = true;
char **operandp = operands;
do {
size_t operand_len = strlen(*operandp);
bufalloc += operand_len + 1;
if (operandp + 1 < operand_lim && *operandp +

operand_len + 1 != operandp[1])
reuse_operand_strings = false;
} while (++operandp < operand_lim);

/* Improve performance by using a buffer size greater than BUFSIZ
/ 2. */
if (bufalloc <= BUFSIZ / 2) {
bufalloc = BUFSIZ;
reuse_operand_strings = false;

}

/* Fill the buffer with one copy of the output. If possible,
reuse

the operands strings; this wins when the buffer would be
large. */
char *buf = reuse_operand_strings ? *operands :

xmalloc(bufalloc);
size_t bufused = 0;
operandp = operands;
do {
size_t operand_len = strlen(*operandp);
if (!reuse_operand_strings) memcpy(buf + bufused, *operandp,

operand_len);
bufused += operand_len;
buf[bufused++] = ' ';

} while (++operandp < operand_lim);
buf[bufused - 1] = '\n';

/* If a larger buffer was allocated, fill it by repeating the
buffer

contents. */
size_t copysize = bufused;
for (size_t copies = bufalloc / copysize; --copies;) {
memcpy(buf + bufused, buf, copysize);
bufused += copysize;

}

/* Repeatedly output the buffer until there is a write error;
then fail. */
while (full_write(STDOUT_FILENO, buf, bufused) == bufused)

continue;
error(0, errno, _("standard output"));
main_exit(EXIT_FAILURE);

}

How to gain more context?

10

Become a user

Use the software you are trying to analyze
- Go through a simple use case

11

Get a working development environment

Set up a working development environment
- Most projects come with a set up guide
- Use a proper setup

- Search
- Go to Implementation
- Find usage
- Debugger
- Bookmarks (Optional, but highly recommended)

12

Understand the data model

Key to deeper understanding
◦ DB Schema
◦ API Docs (Swagger, OpenAPI specs etc)
◦ Inputs

13

Find the inputs

Where do the inputs come from?
◦ User input
◦ API Endpoints
◦ Files
◦ Env vars

14

Choose a path

Trace!

15

DFS vs BFS

16

DFS vs BFS

17

Set up a playground

18

◦ Set up a playground in your IDE
◦ Use online REPLs
◦ Demo 1
◦ Demo 2
◦ Demo 3

https://replit.com/languages/python3
https://replit.com/languages/nodejs
https://replit.com/languages/php_cli

Debugger

◦ See the execution context
◦ Helps you slow down the time

Print statement is NOT a debugger!

19

Other sources of insight

Unit Tests

Comments

Git (or any other form of version control)

20

21

Demo time!

And the last technique

22

Ask for help!

? Question time!

23

