One step Closer to Detection Engineering The Linchpin Framework

Atanas Viyachki (he/him) CISSP | GCIH | GPYC | Senior Threat Hunter@Wealthsimple

Agenda

- 1. Welcome (1 minutes)
- 2. Intro slides (5 minutes)
- 3. Framework Concepts (15 minutes)
- 4. Applying ODEF (15 minutes)
- 5. Summary & Conclusions (surplus time!)
- 6. Thank you!

Do you write custom detections in your organization?

Do you have detection engineers?

Are the detection engineers solely dedicated on writing detections?

What is **D**etection **E**ngineering?

Detection Engineering is a capability that **researches** and models threats in order to deliver modern and effective threat detections.

Goal is to provide *automated* analytical capabilities {*hunts*} that can capture and detect the *behaviours* and **TTPs** of adversaries.

Why developing detections in house when we have vendors?

Security vendors are good and we need them however they don't...

...know our environment like we do ...necessarily have tailored intel for each client ...disclose their security rules and detection logic

As a defenders, we can <u>do better</u> and provide more *assurance*.

How the world sees Detection Engineers?

"A Threat Detection Engineer is someone who applies domain knowledge on designing, building or maintaining detection content in the form of detections generating alerts..."

"Detection Engineering is **the capability to author, interpret and model threats to deliver modern and effective threat detections**. The main output of detection engineering are 'detectors'..."

"Threat detection is the practice of analyzing the entirety of a security ecosystem to identify any malicious activity that could compromise the network..."

My vision for DE

With a good cookbook!!!

- Framework that provides guidelines and enables any team to efficiently build high quality detections and deliver best in class documentation.
- Technical implementation that will *centralize*, *standardize* and *preserve* the *knowledge* that our *security community* have and enable knowledge *sharing*.
- 1. Naturally grow to a *Detection as a Code* capability

Why use cookbooks at all?

THIS

NOT THAT

Why use cookbooks frameworks at all?

Effort to maintain

The Open Detection Engineering Framework Part 1: Concepts

Open **D**etection **E**ngineering **F**ramework - **ODEF**

Benefits for End-Users

- Converts insights to retainable and actionable *knowledge* and promotes knowledge *sharing*
- Introduces detection *lifecycle* and *maturity*

Fundamentals of the ODEF

Framework Core

- Detection lifecycle phases:
 - o Sunrise
 - o Midday
 - o Sunset
- Phase components:
 - Functions
 - o Goals
 - o Guidelines

Detection Engineering Maturity Model (DEMN

- Maturity levels:
 - o Partial
 - Adequate
 - o Enabled

ODEF Phases

<u>Phase</u> → **Sunrise**

$\underline{Functions} \rightarrow$

- **Research** until you know
- **Prepare** with logging and visibility
- **Build & Enrich** high fidelity detection with a baseline
- Validate the detection
- Automate with your SOAR/SIEM
- **Share** the detection in the security organization

ODEF Phases

 $\underline{Phase} \rightarrow$

 $\underline{Functions} \rightarrow$

- Monitor the detection
- Improve the detection logic in case of influx of FP
- Perform systematic **reviews** to ensure detection relevancy

ODEF Phases

$\underline{Phase} \rightarrow$

Sunset

$\underline{Functions} \rightarrow$

- **Decommission** and leave it in a state that it can be resumed anytime
- Preserve knowledge

Part 2: Applying ODEF A detection engineering story

Benefits of using templates:

- Single language for all security teams
- Easy to read documentation
- Ensures quality and minimizes mistakes
- Standardized output

The ODEF Detection M+ Template

Goal: Structure and retain the knowledge collected during research and make it shareable across the organization.

Benefits:

- Improves documentation quality
- Enforces a detection creation process aligned with sunrise phase
- Provides consistency and uniformity

The ODEF Detection Template		
Detection Summary		
Status	Sunrise/Midday/Sunset (developing/active/decommissioned)	
Goal (Why)	Goal/s of the detection	
TTP (What)	List Mitre TTPs; Include threat actor if applicable	
Strategy (How)	Explain Query logic	
Automation (When)	Schedule, What triggers the detection?	
Sources (Where)	Data source, Affected OS	
Severity	high/medium/low	
Priority	high/medium/low	
 Research Prepare Build & Enrich Validate Automate Share Anpondix 		

Goal: Standardize and **abstract** the detections syntax independently of the platform

Benefits

- Minimizes errors by allowing for better readability and troubleshooting
- Standard structure can be used to convert from yml to other standards (terraform, json etc)
- yml is tested with pythoncerberus framework

status: sunrise/midday/sunset created_date: "2023-03-23" last_review_date: name: Detection Name query: Detection query - string which entails your baseline - Note, if multiple baselines - Add them one by one using hyphen visualization: Describe the fields that are being visualized as output of the query schedule: For example, ever 1h, or 1 week etc. event_limit: 0 data_source: The data source used. data_location: The location of the data - cloud, on-prem, system name, bucket name etc. tactic: tactic covered with the detection mitre_id: Mitre id, for example->T1563.001 mitre_url: https://attack.mitre.org/techniques/T1098/001/ detection severity: Severity is a measurement of impact in case of true positive. priority: numeric, 0-unknown, 0.5 - informational, 1-low, 2-medium, 3-high, 4-critical type: type of the incident/malware/hacking etc. name: incident name - normally sourced from the detection name description: 'The human readable description of the incident' sla: if applicable

Enhance with Source Control

Benefits of using SCM:

- Change control
- Enables knowledge sharing
- Standardized content structure
- Awareness through notification
- More efficient collaboration

Content Organization

- Detections & Hunts & IOCs
 - Folders providing structure for documenting and storing your security content
- <u>Templates</u>
 - Contains templates used by the python app for detection yml
- DataDictionary
 - Any data set used can be documented and included in the data dictionary
- Dependencies
 - Folder that provides birdseye view of the data sources and fields used in detections and hunts
- MitreNavigator input
 - Contains the json file used to visualize your defensive coverage
- <u>Tests</u>
 - Unittests to check the validity of the detection yml files

Grow to Detection as Code

Benefits DaC:

- Unit testing
- Modification Control
- Fail-safe deployment
- Reporting
- Consistency

SIEM = Security Information and Event Management SOAR = Security Orchestration, Automation and Response DaC = Detection as Code

Quality Assurance

Unittests

- File content validation
- File exist validation

Cerberus - The watchdog of Hades

• Uses a schema for yml content validation

PR Review Process

Enforcing Detection Reviews via Automation

Implementation with:

- **Github Action**
- Python
- **Github** Issues
- **Github Notifications**

In the config:			
📹 config	•		
✓ config.yml	М		
<pre>max_detection_age:</pre>	365		

In the detection yml:

status:	<pre>sunrise/midday/sunset</pre>
created_	_date: "2023-03-23"
last_rev	/iew_date:
name: De	etection_Name

Process flow

Using ChatGPT API for context enrichment

Explain MITRE attack technique with id T1222.002

MITRE ATT&CK technique with id T1222.002 refers to "File and Directory Permissions Modification by Malicious SMB Server" and it describes a tactic where an attacker can modify file and directory permissions on a victim's system by running a malicious SMB (Server Message Block) server.

SMB is a network protocol used for sharing files, printers, and other resources between computers. Attackers can take advantage of SMB by setting up a malicious SMB server that can send specially crafted messages to the victim's computer. In this specific technique, the attacker exploits a vulnerability in the way Windows handles SMB traffic to modify the permissions on files and directories.

The attacker sends a crafted message to the victim's computer, which results in the malicious SMB server modifying the file and directory permissions on the victim's system. The attacker can then use the modified permissions to access sensitive files, execute malicious code, or escalate privileges on the system.

Explain this query and what is it identifying from security perspective: event_simpleName="RegSystemConfigValueUpdate" AND RegObjectName="*\RDP-Tcp" AND RegValueName="PortNumber" | rename RegNumericValue_decimal as "NewRDPPort" | table timestamp, ComputerName, NewRDPPort

This query is searching for a specific type of event that is related to the update of a registry configuration value. Specifically, it is looking for events with a simple name of "RegSystemConfigValueUpdate", where the registry object name contains the string "\RDP-Tcp", and where the registry value name is "PortNumber".

From a security perspective, this query is looking for changes to the RDP (Remote Desktop Protocol) port number in the Windows registry. Attackers may attempt to change the RDP port number to bypass firewall rules or to avoid detection by security tools that are only monitoring the default RDP port (TCP port 3389). By monitoring changes to this registry value, security teams can detect potential malicious activity and take appropriate actions to mitigate the threat.

Summary & Conclusion

- 1. Start small and build big.
- 2. Engage the power of your security tribe.
- 3. Contextualize your detections and aim to grow to 'Detection as Code' capability.

Resources

- **ODEF public repository**: <u>https://github.com/wealthsimple/odef</u>
 - Framework: <u>https://github.com/wealthsimple/odef/blob/main/Docs/ODEF-README.md</u>
 - ODEF Detection template:

https://github.com/wealthsimple/odef/blob/main/templates/documentation-template.md

- Tools:
 - Mitre ATT&CK Navigator
 - Visual Studio Code
 - <u>Terraform</u>
 - o <u>Jinja</u>
 - o <u>Markdown Cheatsheet</u>
 - <u>Cerberus</u>

Thank you!

LinkedIn → <u>https://www.linkedin.com/in/viyachki/</u>

Email → atanas.viyachki@wealthsimple.com

ODEF Blog \rightarrow <u>https://medium.com/@aviyachki/part-1-bro-do-you-even-</u> <u>detection-engineer-1584dca5ddc9</u>

